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Abstract

Multiparameter flow cytometry (MFC) is one of the essential ancillary methods in

bone marrow (BM) investigation of patients with cytopenia and suspected myelodys-

plastic syndrome (MDS). MFC can also be applied in the follow-up of MDS patients

undergoing treatment. This document summarizes recommendations from the

International/European Leukemia Net Working Group for Flow Cytometry in Myelo-

dysplastic Syndromes (ELN iMDS Flow) on the analytical issues in MFC for the diag-

nostic work-up of MDS. Recommendations for the analysis of several BM cell

subsets such as myeloid precursors, maturing granulocytic and monocytic compo-

nents and erythropoiesis are given. A core set of 17 markers identified as indepen-

dently related to a cytomorphologic diagnosis of myelodysplasia is suggested as

mandatory for MFC evaluation of BM in a patient with cytopenia. A myeloid precur-

sor cell (CD34+CD19�) count >3% should be considered immunophenotypically

indicative of myelodysplasia. However, MFC results should always be evaluated as

part of an integrated hematopathology work-up. Looking forward, several machine-

learning-based analytical tools of interest should be applied in parallel to
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conventional analytical methods to investigate their usefulness in integrated diagnos-

tics, risk stratification, and potentially even in the evaluation of response to therapy,

based on MFC data. In addition, compiling large uniform datasets is desirable, as most

of the machine-learning-based methods tend to perform better with larger numbers

of investigated samples, especially in such a heterogeneous disease as MDS.
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1 | INTRODUCTION

The International/European LeukemiaNet (ELN) Working Group for

Flow Cytometry in Myelodysplastic Syndromes (ELN iMDS Flow) has

previously published several papers proposing harmonization of multi-

parameter flow cytometry (MFC) and integration of this methodology

in the diagnostic work-up of patients with suspected myelodysplastic

syndrome (MDS) and myelodysplastic-myeloproliferative neoplasms

(MDS/MPN) (Porwit et al., 2014; van de Loosdrecht et al., 2009; van

de Loosdrecht et al., 2013; Westers et al., 2012; Westers et al., 2017).

MFC performed according to iMDSFlow has been recommended by

ELN guidelines at diagnosis and following therapy of MDS patients

(Malcovati et al., 2013) and by the MDS Consensus Group (Valent

et al., 2017). Multiple reports from various countries have confirmed

the diagnostic value of iMDSFlow recommendations (Chauhan

et al., 2021; Cremers et al., 2016; Cremers et al., 2017; Davydova

et al., 2021; Grille Montauban et al., 2019; Majcherek et al., 2021;

Porwit & Rajab, 2015; Takeuchi et al., 2020). However, results of a

survey concerning current MFC practice in 229 laboratories around

the world showed that although many laboratories used large num-

bers of markers in MFC workup of MDS (median: 20 ± 4.5), the com-

pliance with iMDSflow recommendations was low, and proposed

scoring systems were not widely applied (Grille Montauban

et al., 2019; Jensen et al., 2019). With the hope of increasing the har-

monization of MFC MDS diagnostics, the current paper presents a

summary of the progress in this field and an update on consensus

iMDSFlow guidelines for the assessment of significant anomalies in

various bone marrow (BM) cell compartments for MFC features of

dysplasia as a part of a special Issue of Clinical Cytometry B, focused

on MFC applications in MDS and MDS/MPN (Kern et al., 2022; van

de Loosdrecht et al., 2023; van der Velden et al., 2023; Wagner-Ballon

et al., 2023; Westers et al., 2021; Westers et al., 2023).

2 | MINIMAL REQUIREMENTS TO ASSESS
DYSPLASIA BY MFC

A myelodysplastic syndrome may be suspected in any individual pre-

senting with cytopenia that cannot be attributed to any other known

condition. Cytological assessment of BM films remains the first exami-

nation in the search for possible hemopoietic dysplasia. MFC will com-

plement the primary morphological evaluation, especially in borderline

cases where immunophenotypic aberrations can support or exclude

MDS diagnosis (as illustrated in a diagnostic algorithm presented in

Figure 1 in van de Loosdrecht et al., 2023). The previous iMDSflow

recommendation that the four-parameter Ogata score (Ogata

et al., 2009) may be used for a preliminary assessment of MFC dyspla-

sia has been confirmed by several publications (Bardet et al., 2015;

Dhingra et al., 2020; Grille Montauban et al., 2019; Kárai et al., 2017;

Mannelli et al., 2019; Matzen et al., 2018; Muyldermans et al., 2019;

Rajab & Porwit, 2015). This score is based on the frequency of mye-

loid CD34+ myeloid progenitors (MP) (>2%), the fraction of B-cell pre-

cursors within CD34+ cells (<5%), abnormal CD45 expression on

CD34+ blasts, and low granulocyte scatter (granulocyte/lymphocyte

SSC ratio ≤6). In the first publication, the frequency of B-cell precur-

sors was evaluated using gating based on forward vs. side scatter

properties (Ogata et al., 2009). However, most laboratories nowadays

include CD19 to increase precision (Guo et al., 2020; Matzen

et al., 2018; Rajab & Porwit, 2015). The four parameters carry differ-

ent weights in the evaluation of dysplasia. Increased frequency of

CD34+ MP and low side scatter (SSC) of granulocytes are more spe-

cific than the decreased fraction of CD34+ B-cells and altered CD45

expression of CD34+ MPs (Bardet et al., 2015; Rajab & Porwit, 2015).

The Ogata scores with a cut-off ≥2 have diagnostic and prognostic

values (Della Porta et al., 2012; Della Porta et al., 2014). Scores of

2 are observed relatively often in patients with non-clonal cytopenias,

while scores 3 or 4 are significantly associated with cytomorphological

myelodysplasia and MDS or MDS/MPN diagnosis (Rajab &

Porwit, 2015; van Gammeren et al., 2018).

For a detailed evaluation of dysplasia, comprehensive panels

including evaluation of MP immunophenotype, myeloid and mono-

cytic maturation and evaluation of erythropoiesis are recommended

(Eidenschink Brodersen et al., 2015; Oelschlaegel et al., 2021; Porwit

et al., 2014; Selimoglu-Buet et al., 2015; Violidaki et al., 2020;

Westers et al., 2012; Westers et al., 2017; Zhu et al., 2019). Alter-

ations of antigen expression should always be evaluated in the con-

text of clinical data, morphological changes, and cytogenetic/

molecular findings.

3 | MYELOID PROGENITOR CELLS

The CD45dim/SSClow/int BM cell compartment (a “blast gate” or “MP

gate” on a CD45/SSC plot) in normal BM has been characterized as a
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F IGURE 1 Aberrant immunophenotype of myeloid precursors in a case of MDS with excess of blasts in comparison to normal BM pattern.
Previously published panels (Violidaki et al., 2020) were applied. Debris was removed and singlets were gated resulting in the “LIVE” gate (not
shown). (a) MDS case: CD34+ cells were gated on the SSC/CD34 plot (cyan dots, upper left plot). A small population of CD56+ CD34+ cells (blue
dots) was identified (upper, middle-left plot). CD34+ cells were positive for CD11b, CD13, CD117, CD10 (upper middle-right and right plots) and
CD33, but negative for CD19 (lower left plot). A small population of CD7+ CD34+ cells was found (lower middle-left plot). Most of CD34+ cells
we negative for CD38 and HLA-DR, and a subset of CD36+ CD34+ cells was detected, localized with the CD38+ subset and partly HLA-DR
positive (lower right plots). (b) Corresponding plots obtained with the same panel in a normal bone marrow sample showing normal
immunophenotypic profile of CD34+ cells. The frequency of cells found in the areas of aberrant immunophenotypes in (a) is indicated
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heterogeneous population where progenitor cells of various lineages

reside (Arnoulet et al., 2010; Borowitz et al., 1993; Jafari et al., 2018).

In MDS, the frequencies of various cell populations in this area

change, and MPs predominate while other cell subsets decrease

(Jafari et al., 2018; Matarraz et al., 2008). According to Mattarz et al.,

at least 3 � 103 CD34+ cells should be analyzed for a thorough analy-

sis of the CD34+ compartment (Matarraz et al., 2008). In the ELN

iMDS Flow experience (van der Velden et al., 2023), a minimum of

100,000 WBCs should be acquired per tube with a minimum of

250 CD34+ cells.

An increase in hematopoietic precursor cells (HPC) and MPs (usu-

ally defined as CD45dimSSClow/int CD34+CD19�) above 2% of total

BM nucleated cells is a common finding in MDS that also has prog-

nostic significance (Matarraz et al., 2010; Vido-Marques et al., 2020;

Xu et al., 2013). The multicenter study of the ELN iMDSFlow WG

(Kern et al., 2022) confirms that 3% MPs is a critical cut-off in MFC,

above which most cases are MDS or MDS/MPN (whenever acute leu-

kemia is excluded).

Immunophenotypical abnormalities often found in the MP com-

partment in MDS patients are summarized in Table 1. In some MDS

patients, abnormally low CD34 expression in CD117+ precursors can

be found, despite increased numbers of cells in the MP region

(CD45dimSSClow/int). Thus, CD117 expression should also be evaluated

both on CD45dimSSClow/intCD34+CD19� cells and in the CD45dim/

SSClow/int BM compartment (Alhan et al., 2016; Matarraz et al., 2010).

An increased CD117 expression is frequently seen in the MP com-

partment in MDS, and it is one of the MFC variables associated with

worse survival (Alhan et al., 2016; Shen et al., 2015). Thus, evaluation

of the CD34/CD117 expression ratio in the MP compartment is

recommended (Table 1).

Examples of abnormal findings in the MP compartment and corre-

sponding normal BM patterns are illustrated in Figure 1a,b. Overex-

pression of CD34 and abnormal expression of CD117, CD45 and CD7

were the most frequently encountered findings in the ELN iMDSFlow

multicenter study (Kern et al., 2022). Although not included by enough

participating laboratories in this study, CD38 and CD123 are also of

interest since the increased frequency of CD34+CD123+CD38� cells

may be associated with increased numbers of cells with leukemia

stem-cell characteristics (Al-Mawali et al., 2016; Li et al., 2014). Except

for the low frequency of CD34+ B-cell precursors in the MP compart-

ment, CD19 was the least frequent aberrantly expressed marker in the

multicenter study.

Aberrant marker expression in the CD34+ compartment is found

not only in MDS but also in MDS/MPN, such as chronic myelomono-

cytic leukemia (CMML). Abnormalities include an increase of CD34+

cells, reduced CD34+ B-cell precursors, increased intensity of expres-

sion for CD34, CD13, CD117, and CD123, decreased expression of

CD38, aberrant expression of CD2, CD5, CD7, and CD56, and asyn-

chronous expression of CD15 or CD64 (Shen et al., 2015). Of note,

aberrancies in the MP compartment may persist after therapy with

hypomethylating agents (Shen et al., 2015) and can be occasionally

seen in patients after cytostatic therapy or stem-cell transplantation

for other malignancies such as B-cell acute lymphoblastic leukemia

(Kriegsmann et al., 2018).

TABLE 1 Aberrant multiparameter flow cytometry features in a myeloid progenitor cell population (SSClow/CD45dim) in BM samples of
patients with myelodysplastic syndrome

Marker/pattern Aberrant feature Referencesa

CD45 Increased CD45dim population Stetler-Stevenson et al. (2001); Maynadié et al. (2002);

Truong et al. (2009); Della Porta et al. (2011)

CD34 Increased number in BM (>3%) Malcovati et al. (2005); Ogata et al. (2006); Matarraz

et al. (2008); van de Loosdrecht et al. (2008); Kern

et al. (2022)

CD34 Increased number of CD34bright cells Maynadié et al. (2002); Pirruccello et al. (2006)

CD34/CD117 ratio Aberrant ratio may be caused by lack of CD34+ population or

decreased CD34+CD117+ population or increased CD34�/
CD117+ population

Matarraz et al. (2008); (2010); Truong et al. (2009);

Stachurski et al. (2008); Alhan et al. (2016)

CD34+/CD38 Increased frequency of CD38�/dim CD34 cells Kussick et al. (2005); Monreal et al. (2006); Goardon

et al. (2009); Xie et al. (2010); Tang et al. (2012)

CD34+/CD45 Increased number of CD45� CD34+ cells Kussick et al. (2005); Scott et al. (2008)

CD34+/CD123+ Increased number of CD123+ CD34+ cells Tang et al., 2012

CD34+/CD19 Decreased proportion of CD34+/CD19+ lymphoid progenitors Malcovati et al. (2005); Matarraz et al. (2010)

CD34+ /HLA-DR Increased proportion of HLA-DRneg/dim CD34+ progenitors Kussick et al. (2005); Scott et al. (2008)

CD13/CD33 Increased numbers of CD13+/CD33� or CD13�/CD33+

progenitors

Scott et al. (2008); Harrington et al. (2010); Chu et al.

(2011)

CD2, CD4, CD5,

CD7b, CD56

Aberrant expression on CD34+ and or CD117+ progenitors Stetler-Stevenson et al. (2001); van de Loosdrecht et al.

(2008); Kern et al. (2010)

CD11bc High expression on CD34+ cells Kern et al. (2010)

aExamples of references that reported this feature.
bMinimal CD34+/CD7+/ CD13low populations (<0.1%) can be seen in regenerating bone marrow.
cCan be increased in patients treated with G-CSF.
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BM immunophenotyping in MDS is usually performed using anti-

body combinations to detect abnormal patterns in immature (MPs)

and mature cell compartments. Multicolor (8–10) color panels are

recommended and examples of such panels from the literature are

presented in a separate paper from the ELN iMDS Flow WG on pre-

analytical aspects (van der Velden et al., 2023). The absence of aber-

rant MPs at diagnosis and/or a decrease in the abnormalities during

treatment identified Intermediate-2 risk and High-risk (Greenberg

et al., 2012) MDS patients who are likely to respond to treatment with

azacitidine (Alhan, Westers, van der Helm, et al., 2014; Subirá

et al., 2021).

In summary, based on data from the literature and the results of

the multicenter study of the ELN iMDSFlow WG (Kern et al., 2022),

evaluation of MPs for MDS should include their quantification with a

cut-off of >3% CD34+ cells (of viable BM cells), which is strongly

indicative of MDS or MDS/MPN on its own. Moreover, the assess-

ment of CD45, CD117, HLA-DR, CD13, CD5, CD7, and CD56 in the

MP compartment is recommended since aberrant expressions of

these markers have been demonstrated to be independently related

to a diagnosis of MDS.

4 | MATURING GRANULOCYTIC
COMPARTMENT

Comprehensive MFC analysis of the maturing granulocytic compart-

ment is an essential part of the MDS diagnostic workup (Table 2), and

it is incorporated in several MDS MFC scores (Alhan et al., 2016;

Alhan, Westers, Cremers, et al., 2014; Barreau et al., 2020; Chu

et al., 2011; Cremers et al., 2016; Ogata et al., 2009; Wells

et al., 2003; Xu et al., 2013). Accurate immunophenotypic identifica-

tion of the maturation pattern of myeloid cells is a prerequisite. This

can be accomplished by using a multidimensional gating strategy:

(1) inclusion of SSCint/high/CD45int cells, (2) exclusion of progenitor cells

(CD45intCD34hi), monopoiesis (CD45hiHLA-DRhiCD33hi and /or

CD64hi and/or CD14hi), eosinophils (SSChiCD45hiCD13hiCD16neg)

(Hassani et al., 2020), basophils (SSCloCD45intCD123hiHLA-DRneg),

plasmacytoid dendritic cells (SSCloCD45intCD123hiHLA-DRhi), most

immature erythroid cells (SSCloCD45intCD71hiCD117int or CD105hi;

optional: CD33negCD13neg), and (3) purity control of the gated popula-

tion of maturing myeloid cells via back-gating with a combination of

CD13/CD16, CD13/CD11b or HLA-DR/CD11b (Figure 2). The pat-

terns of these three latter combinations are very stable in normal

maturing BM, and their disruption is a significant sign of underlying

MDS (Orfao et al., 2019).

Analysis of antigen expression patterns in BM samples can be

performed in different ways. The ELN iMDS Flow WG recommends

establishing laboratory-specific reference ranges until standardized

protocols and reference ranges are available for various MFC systems.

Published cut-offs and antigen expression patterns should be verified

in-house. We recommend the analysis of 10–20 BM samples from

patients with non-clonal cytopenias (such as idiopathic thrombocytic

purpura) or lymphoma staging BM without any signs of infiltration to

establish laboratory-specific reference ranges.

4.1 | MDS-related abnormalities measured as
numerical or phenotypic changes in maturing
granulocytic cells in relation to lymphocytes

The number of maturing granulocytic (Gr) cells compared to lympho-

cytes (Ly) is the first parameter to be analyzed since it reflects myeloid

cell differentiation. A decreased Gr/Ly ratio (for many laboratories

<1.0) suggests a limited ability of the immature myeloid cells to differ-

entiate into granulocytes and it has been included in MFC scoring sys-

tems (Cremers et al., 2017; Wells et al., 2003). However, this ratio is

also altered in aplastic anemia due to a reduction in maturing myeloid

cells (Wells et al., 2003). Therefore, the ELN iMDS Flow WG recom-

mends applying this parameter with caution, particularly if clinicopath-

ological characteristics point toward aplastic anemia or hypoplastic

MDS. Caution should also be exerted in pediatric samples (Aalbers

et al., 2015; van der Velden et al., 2023).

Neutrophil hypogranularity is a crucial feature of myeloid dyspla-

sia by cytomorphology. MFC allows a more objective assessment of

this feature by investigating very large numbers of cells and applying a

parameter set in the context of a reference range. The value used

here is the SSC ratio of maturing granulocytic cells relative to that of

mature lymphocytes as an internal standard. This strictly defined

parameter, first introduced by Ogata and colleagues (2009), has since

then been incorporated in recent MFC scores and is widely used in

daily practice (Cremers et al., 2017; Kern et al., 2010; Matarraz

TABLE 2 The most common multiparameter flow cytometry
aberrant features in granulopoiesis in myelodysplastic syndrome

Marker/pattern

Aberrant

feature Referencesa

Maturing myeloid cells-to-lymphocytes ratio

SSC Decreased Wells et al. (2003);

Stetler-Stevenson

et al. (2001)

Percentage Decreased Cremers et al. (2017);

Porwit et al. (2014)

Aberrancies in antigen expression

CD34 (%) Asynchronous

expression

Matarraz et al. (2008)

CD5; CD7; CD56 (%) Cross lineage

expression

van de Loosdrecht et al.

(2008)

CD13/CD16/CD11b Aberrant

pattern

Stetler-Stevenson et al.

(2001); Kussick et al.

(2005)

CD15/CD10 Aberrant

pattern

Huang et al. (2010);

Chung et al. (2012)

CD33 (MFI) Decreased Wells et al. (2003);

Kussick et al. (2005);

Kern et al. (2010)

aExamples of references that reported this feature.
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et al., 2010; Oelschlaegel et al., 2021; Rajab & Porwit, 2015; Wells

et al., 2003). The correct gating procedure (in particular the exclusion

of MPs, see Figure 2) may not be easy to accomplish in some cases,

however, it should be performed precisely to guarantee a correct SSC

analysis (Westers et al., 2012). An abnormal SSC signal has also been

reported in a fraction of control cases in the ELN iMDSFlow multicen-

ter study (20.1%, Kern et al., 2022) and might be affected by

decreased cell viability with sample aging.

Another frequently analyzed parameter is the ratio of the expres-

sion of the common leukocyte antigen CD45 on maturing granulo-

cytes relative to lymphocytes. Normal myeloid cells show an

intermediate expression intensity (measured as mean fluorescence

intensity, MFI) compared to a bright expression on lymphocytes

(Figure 2). As with the SSC ratio, a reference range should be estab-

lished for this parameter (Aalbers et al., 2013). A decrease in CD45

expression on maturing granulopoietic cells has been described in

MDS and incorporated in various MFC scoring systems (Barreau

et al., 2020; Matarraz et al., 2010).

4.2 | MDS-related abnormalities measured as
aberrancies in antigen expression patterns

Multiple changes in the expression of myeloid maturation antigens

result in abnormal expression patterns. Abnormalities in the granulo-

poiesis maturation patterns using CD13/CD16/CD11b markers com-

bination (Figure 3) have been reported in many publications (Chopra

et al., 2012; Chung et al., 2012; Kern et al., 2010; Kussick et al., 2005;

Kussick & Wood, 2003; Stetler-Stevenson et al., 2001). CD13/CD16

and CD13/CD11b marker combinations displayed aberrant patterns

of maturation in granulopoiesis in 29% and 40% in low-risk MDS

patients in the ELN iMDSFlow multicenter study by comparison to

16% and 11% of hospital controls (Kern et al., 2022).

The exact measurement and determination of “aberrant” versus

“within range” patterns may vary between laboratories. Different

panels and conjugates may result in slight differences in observed pat-

terns. Most ELN iMDS WG laboratories use pre-defined gates or

software-generated pathways and measure the proportion of matur-

ing myeloid cells that fall outside these standards. Exact cut-offs, if

applied, are validated ‘in-house’. A complete or partial loss of CD16

(a glycosyl-phosphatidyl-inositol [GPI] anchored protein, Figure 3)

might suggest the presence of a paroxysmal nocturnal hemoglobinuria

(PNH) clone which requires further testing for other GPI anchored

antigens such as CD14 on mature monocytes and CD24 on mature

neutrophils (Sutherland et al., 2018; Westers et al., 2021). Aged BM

specimens, eosinophils contaminating the granulocyte gate and

genetic polymorphisms may also account for changes in CD16 expres-

sion (de Haas et al., 1995; Loken et al., 2009; Stachurski et al., 2008).

An altered maturation pattern skewed to more mature myeloid cells

suggests hemodilution. The skewed pattern in such a case is not an

aberrancy but a sample quality problem. Loken et al. (2009) proposed

to consider the fluorescence intensity of CD16 to address this prob-

lem with two possible scenarios: (1) only samples with less than 30%

of mature myeloid cells (CD16hi) are considered adequate or (2) in

F IGURE 2 Gating procedure of maturing granulocytic cells: Maturing myeloid cells (SSCint/high/CD45int) are shown in green. Most important
cell populations, which should be excluded from the maturing myeloid compartment are color coded as follows: myeloid progenitor cells (MyPC in
red; SSCloCD45intCD34hi), lymphoid progenitor cells (LyPC in blue; SSCveryloCD45loCD34hi), monocytes (in orange; SSCint/CD45hiCD33hi and/or
CD14hi), eosinophils (in black; SSChiCD45hiCD13hiCD16neg)
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samples with higher proportions, the use of a correction formula is

needed (Loken et al., 2009). Pont et al. (2018) reported that the ratio

of immature granulocytes (SSCint/hiCD45loCD10negCD16neg/lo) to neu-

trophils (SSCint/hiCD45loCD10+CD16hi) (IGRA/N ratio) was the best

parameter to assess the hemodilution of a BM specimen. Thus, CD16

expression should only be interpreted in the context of other matura-

tion antigens and in the absence of PNH. Additionally, in some non-

clonal conditions, such as nutritional deficiencies (e.g., folic acid), the

maturation pattern of granulopoiesis can also be altered. In these

cases, if abnormal WBC values persist, examination of a post-

supplementation BM aspirate is recommended to clarify whether the

maturation abnormalities persist after substitution.

Asynchronous antigen expression of progenitor cell-related anti-

gens (CD34, CD117, and HLA-DR) on maturing myeloid cells and

asynchronous shift toward an immature immunophenotype

(ex. decreased CD15 expression in parallel to a normal CD13/CD16/

CD11b expression) are commonly observed MFC features of dysgra-

nulopoiesis (Cremers et al., 2017; Wells et al., 2003; Westers

et al., 2012). The relationship between CD15 and CD10 could also be

abnormal if CD10 is lost or decreased despite a bright CD15 expres-

sion (Barreau et al., 2020; Duetz et al., 2019; van de Loosdrecht

et al., 2009). Of note, abnormal strong CD15 expression can also be

due to hemodilution, and decreased CD10 expression has been

described in autoimmune diseases, hemophagocytic lymphohistiocy-

tosis, and reactive conditions (McCall et al., 2012; Morisaki

et al., 1992; Ui Mhaonaugh et al., 2019). A lack of CD33 antigen has

also been described on maturing granulopoietic cells and incorporated

in different diagnostic MFC scores (Cremers et al., 2017; Kern

et al., 2010; Matarraz et al., 2010; Wells et al., 2003). However, cau-

tion should be exercised since changes due to polymorphisms have

been described for CD33 as well as for CD16 (Pérez-Oliva

et al., 2011; Raptis et al., 1998). Thus, in the presence of concomitant

decreased CD33 expression on granulocytes, monocytes, and myeloid

progenitor cells, a genetic polymorphism should be suspected.

Cross-lineage expression of lymphoid antigens (such as CD5,

CD7, CD19, or CD56) in maturing myeloid cells has high importance

in the MFC assessment of dysgranulopoiesis (Barreau et al., 2020;

Cremers et al., 2017; van de Loosdrecht et al., 2008; Wells

et al., 2003). Hence, lymphocytes should be excluded from the granu-

lopoiesis gate for analysis of cross-lineage expression. CD56 expres-

sion on maturing myeloid cells and myeloid progenitors and/or

monocytes can occur in inflammatory conditions, in diabetes and after

chemotherapy treatment (so-called “stressed bone marrow”)
(Friedrich et al., 2019; Grip et al., 2007, Krasselt et al., 2013). Thus,

the ELN iMDSFlow WG would not consider CD56 expression alone

as significant in assessing post-treatment MDS flow scores.

F IGURE 3 Examples of antigen expression in normal bone marrow (upper row) in comparison to immunophenotypic aberrancies in maturing
myeloid cells in myelodysplastic syndrome (MDS) and in paroxysmal nocturnal hemoglobinuria (PNH). Left: aberrant CD56 expression (dark
green) detected in maturing myeloid cells of MDS (lower row), but was detectable only in a minority of normal bone marrow cells; NK cells (light
blue) which regularly express CD56 and T-/B-lymphocytes (dark blue) without CD56 expression are displayed as an internal control. Middle:
abnormally shaped CD11b/CD16 expression pattern in MDS (lower row) compared to normal bone marrow as CD16neg CD11b+ via
CD16+CD11b+ to CD16++CD11b+. Right: partial CD16 deficiency due to PNH (lower row) compared to normal bone marrow as CD16neg

CD13+ via CD16neg CD13neg to CD16++ CD13+. Black arrows mark the normal maturation pattern

PORWIT ET AL. 33



Furthermore, CD14 or CD64 expression intensity may be altered

in maturing myeloid cells (Barreau et al., 2020; Kern et al., 2010;

Matarraz et al., 2010). Overexpression of CD14 on maturing granulo-

cytic cells has been described as associated with genetic abnormalities

such as del(5q) or chromosome 7 monosomy (Chen et al., 2019;

Keerthivasan et al., 2014). A normal, bright expression of these anti-

gens on monocytic cells strengthens the necessity of proper exclusion

of monocytes from the granulopoiesis gate, as described above. Of

note, an increased CD64 expression on maturing granulocytic cells

could be associated with infection (especially in patients with sepsis)

(reviewed in Patnaik et al., 2020).

In some MDS cases, a prominent BM eosinophilia may be present

without significant eosinophilia in blood. In such cases, specific WHO-

defined eosinophilic disorders should be excluded (reviewed in

Shomali & Gotlib, 2019). Blood eosinophilia is an adverse prognostic

factor (Andersen et al., 2015), and increased eosinophils and basophils

have been described as a sign of progression in MDS (Wimazal

et al., 2008). Recent studies point out the presence of neutrophils

with features of eosinophils, monocytes, and dendritic cells, as well as

eosinophil subsets expressing neutrophil markers in various disease

states (reviewed in Berdnikovs, 2021). However, to our knowledge,

dysplastic MFC features of eosinophils in MDS are not yet defined

and currently do not contribute to MDS diagnosis.

In summary, analysis of MDS-related aberrancies in the maturing

granulocytic compartment may be challenging due to the large variety

of possible aberrancies and because some of these also occur in con-

ditions other than MDS. Therefore, the iMDS Flow WG does not rec-

ommend using any of the mentioned markers in isolation. The analysis

of several antigen expression patterns is necessary for a correct classi-

fication between aberrant vs. non-aberrant maturing granulocytic

cells. This has already been implemented in some MFC diagnostic

scores such as FCSS and iFS (Cremers et al., 2017; Wells et al., 2003).

Based on data available and the results of the multicenter study

of the ELN iMDSFlow WG (Kern et al., 2022), the evaluation of the

granulocytic compartment in BM of patients with suspect MDS or

MDS/MPN should include the quantification of granulocytes (aber-

rant percentages) as well as the assessment of a reduced SSC-Gr sig-

nal, of an aberrant expression of CD33 in granulocytes and evaluation

of CD13/CD16 expression pattern in granulocytes, which all have

been demonstrated to be independently related to a diagnosis of

MDS or MDS/MPN.

5 | MONOCYTES

5.1 | Monocytic lineage in the bone marrow

Early monocytic commitment among bone marrow CD34+ HPCs is

defined by the progressive acquisition of CD64 starting from low

intensity and increasing to heterogeneous expression levels (Matarraz

et al., 2008; Matarraz et al., 2010; Matarraz et al., 2017; Orfao

et al., 2019). In parallel, these early monocytic precursors (morphologi-

cally corresponding to monoblasts), downregulate the immature

markers CD34 and CD117. Early promonocytes acquire myelomono-

cytic maturation antigens such as CD11b, CD11c, CD15, cytoplasmic

(Cy) lysozyme, CyCD68, and CD36, followed by the acquisition of sur-

face CD14 and CD35 (Dunphy, 2011; Matarraz et al., 2017; van

Dongen et al., 2012). The further immunophenotypic transition

toward mature monocytic stages is characterized by the acquisition of

CD300e and CD312 (Matarraz et al., 2017; Orfao et al., 2019).

CD62L expression is preserved throughout monocytic maturation in

the BM, while in blood and lymphoid tissues the presence or absence

of CD62L defines distinct maturation-associated subsets of mono-

cytes (Damasceno et al., 2019).

The most frequently reported altered monocytic immunopheno-

types in myelodysplasia include (Table 3):

1. decreased light scatter characteristics (20%–30% of MDS cases),

TABLE 3 The most common multiparameter flow cytometry aberrant features in monocytes in myelodysplastic syndrome and chronic
myelomonocytic leukemia (CMML)

Merker/pattern Aberrant feature Referencesa

Aberrancies in scatter

characteristics

Decreased Matarraz et al. (2010)

Aberrancies in antigen expression (including CMML)

CD13, CD14, CD15,

CD36, CD64

HLA-DR, CD11b,

CD11c

Decreased Xu et al. (2005); Subirá et al. (2008); Matarraz et al. (2010); Kern et al. (2011); Sojitra et al.

(2013); Harrington et al. (2016); Kern et al. (2022)

CD56, CD2 Cross lineage expression Xu et al. (2005); Subirá et al. (2008); Matarraz et al. (2010); Kern et al. (2011); Kern et al.

(2022)

Aberrancies in monocyte subpopulation partition in CMML

cMo % Increased ≥94%b Selimoglu-Buet et al. (2015); Selimoglu-Buet et al. (2017)

Talati et al. (2017); Patnaik et al. (2017); Hudson et al. (2018); Tarfi et al. (2018); Wagner-

Ballon et al. (2023)

slan+ ncMo% Decreased <1.7% Tarfi (2019)

aA relative accumulation of circulating cMO has been reported in roughly one third of the MDS patients (Selimoglu-Buet et al., 2017; Talati et al., 2017).
bExamples of references that reported this feature.
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2. downregulation of monocyte-associated differentiation markers

such as CD11b, CD13, CD14, CD36, CD64 (16%–34% of MDS

cases),

3. abnormally low frequency of CD300e+ mature monocytes (18% of

MDS cases) (Matarraz et al., 2010).

In addition, cross-lineage marker expression is a relatively fre-

quent finding among monocytic lineage cells in MDS, including aber-

rant expression of the CD56 and/or CD2 lymphoid-associated

antigens, reported in 48% and 32% of the cases respectively

(Matarraz et al., 2010; Subirá et al., 2008). Cross lineage expression of

CD2, CD7, and CD56 has also been reported in CMML, together with

low expression of CD14 and CD11c, down-regulation or lack of CD13

or HLA-DR, and increased numbers of monocytic lineage cells (Kern

et al., 2011; Sojitra et al., 2013; Subirá et al., 2008). Thus, the occur-

rence of persistent monocytosis, associated with ≥2 immunophenoty-

pic alterations on monocytic cells, >20% of CD14low BM monocytes

and decreased expression of CD11c, has been described as highly

specific for CMML (Sojitra et al., 2013; Xu et al., 2005). However, cau-

tion should be exerted while evaluating patients who developed cyto-

penias during active therapy for other medical conditions since some

changes observed in the monocytic compartment may be due to acti-

vation or regeneration (Tang et al., 2012).

As expected, the multicenter study of the ELN iMDSFlow WG

found a higher frequency of aberrant monocyte immunophenotypes

in CMML by comparison to MDS (Kern et al., 2022). CD56 expression

on monocytes was the most frequent abnormal feature in BM with

myelodysplasia. Abnormal expressions of CD13 and HLA-DR were

found in a considerable fraction of hospital controls, making these

markers less specific for the evaluation of immunophenotypically

defined myelodysplasia (Kern et al., 2022).

In summary, based on data available and the multicenter study of

the ELN iMDSFlow WG (Kern et al., 2022) in particular, the evaluation

of monocytes for MDS should include their quantification (aberrant

percentages) as well as the assessment of an aberrant expression of

CD13 and of CD56, and of an aberrant HLA-DR/CD11b expression

pattern which all have been demonstrated to be independently

related to a diagnosis of MDS or MDS/MPN.

5.2 | Monocyte subsets in peripheral blood

Overall, blood monocytes can be stratified in three major subsets

according to their expression of CD14 and CD16 (Figure 4): that is,

CD14++CD16� classical monocytes (cMo), CD14++CD16+ interme-

diate monocytes (iMo) and CD14�/lowCD16+ non-classical (ncMo)

(Wong et al., 2011). From an analytical point of view, it is also recom-

mended in the diagnostic work-up of MDS or MDS/MPN to acquire

at least 10,000 cMo events to ensure the robustness of cMo identifi-

cation (Tarfi et al., 2018), which should include an exclusion gating

strategy to remove cell populations that may overlap ncMo (e.g., NK

cells) (Selimoglu-Buet et al., 2017).

A relative accumulation of cMo (≥94% of total blood monocytes)

is associated with a CMML diagnosis with high specificity (94.1%) and

sensitivity (92.8%, reaching 100% for CMML type 2) (Selimoglu-Buet

et al., 2017). The 94% threshold has been subsequently validated in

independent studies (Hudson et al., 2018; Patnaik et al., 2017; Talati

et al., 2017) and in the CMML prospective trial conducted by the ELN

iMDS Flow WG (Wagner-Ballon et al., 2023). The prospective trial has

also indicated that the 94% cMo threshold could be valid for BM sam-

ples (see Figure 4 in Wagner-Ballon et al., 2023).

However, the monocyte assay can be compromised by the co-

occurrence of an inflammatory state in CMML patients, leading to an

increase in the iMo subset and a subsequent decrease in the relative

cMo percentage that may not reach the diagnostic cut-off of 94%.

Although the typical CMML signature may be erased in such cases,

F IGURE 4 Representative examples of blood monocyte subpopulation distribution profiles obtained with the monocyte assay.
(a) Immunophenotype in favor of chronic myelomonocytic leukemia (CMML) showing an accumulation of cMo that is, a percentage ≥94.
(b) Immunophenotype not in favor of CMML showing no accumulation of cMo that is, a percentage <94. (c) Immunophenotype in favor of CMML
with an easily recognized bulbous aspect, due to an increase in iMo fraction combined with the near disappearance of the ncMo subset, leading
to a decrease in the cMo percentage below the 94% threshold [Color figure can be viewed at wileyonlinelibrary.com]
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there is an easily recognized “bulbous” profile (Figure 4) (Selimoglu-

Buet et al., 2017). Identification of this MFC profile can be further

refined by incorporating a ncMo specific marker, such as slan (M-

DC8 6-sulfo LacNAc) to better identify CMML patients with an asso-

ciated inflammatory state (Tarfi et al., 2019). It should be noted that

relative accumulation of circulating cMo ≥94% of total monocytes

has been described in roughly one-third of MDS patients at diagno-

sis (Selimoglu-Buet et al., 2017; Talati et al., 2017), half of them con-

sidered likely to evolve into overt CMML (Selimoglu-Buet

et al., 2017).

6 | ERYTHROID LINEAGE

CD235a (glycophorin A) and CD71 (transferrin receptor) are well-

known markers for studying the erythroid lineage (Loken et al., 1987).

In addition, CD117 (stem cell factor receptor), CD105 (endoglin),

CD36 (thrombospondin receptor), CD45low/neg and SSClow enable dis-

section of the erythroid maturation in clear steps (Eidenschink

Brodersen et al., 2015; Fajtova et al., 2013; Machherndl-Spandl

et al., 2013; Orfao et al., 2019). This knowledge facilitates the analysis

of dyserythropoiesis in MDS. MFC analysis of markers for erythroid

dysplasia includes aberrant surface marker expression (intensity,

homogeneity, and heterogeneity) and abnormal distribution of matur-

ing erythroid cell subsets.

In MDS, an aberrant expression pattern of CD71 versus CD235a

is a classic example of dyserythropoiesis (Stetler-Stevenson

et al., 2001). In addition, an increase in the coefficient of variation

(CV) of CD36 and CD71 expression serves as a specific feature of

MDS-associated erythroid dysplasia (Mathis et al., 2013). The multi-

center study performed by the ELN iMDSFlow WG confirmed these

findings and demonstrated that the CV of CD36 and CD71 expres-

sion, median expression of CD71 and frequency of CD117+ erythroid

progenitors form a combination of parameters that enable differentia-

tion between MDS-associated erythroid dysplasia and non-clonal

cytopenic controls (Table 4, Figure 5) (Westers et al., 2017). Neverthe-

less, various conditions (e.g., reactive changes, medication-induced

anomalies, vitamin B12, and folate deficiencies) may induce dysplastic

features in the BM erythroid lineage.

The sensitivity of detecting MDS-associated erythroid dysplasia

by MFC is relatively low (approximately 30%–40%), but the specificity

is high at 90%. The addition of erythroid lineage evaluation to current

(mainly myelomonocytic-oriented) MFC scores improved the total

diagnostic sensitivity (up to 85%; Cremers et al., 2017; Mathis

et al., 2013).

As described in detail in van der Velden et al. (2023), the erythroid

compartment is sensitive to lysing procedures used to remove mature

erythrocytes, which may cause an altered frequency of erythropoietic

precursors, subset distribution or marker expression (Violidaki

et al., 2020). Immature CD117+ and CD105+ erythroid progenitors,

as well as other erythroid precursors seem to be less affected by

ammonium chloride-based lysis than other lysing protocols. It may be

in part due to a 10-fold lower expression of carbonic anhydrase in

erythroid progenitors than in reticulocytes and mature erythrocytes

(Gautier et al., 2016; Wangen et al., 2014).

Nevertheless, CV values of CD36 and CD71 MFI as assessed in

both lysed and non-lysed BM were equally informative concerning

the analysis of erythroid dysplasia (Mathis et al., 2013; Violidaki

et al., 2020; Westers et al., 2017). The ELN iMDS Flow WG multicen-

ter study confirmed CD71 as a helpful marker for evaluating erythro-

poietic dysplasia (Kern et al., 2022). In this study, data on other

markers, such as CD117, CD105, and CD235a, was not sufficient to

draw definitive conclusions.

CD105 is a potential marker to be included in MFC analysis of

the erythroid lineage. In addition to an aberrant frequency of

CD105+ progenitors, CD105 overexpression has been reported in

TABLE 4 Recommended erythroid markers to assess myelodysplastic syndrome-associated erythroid dysplasia

Marker/pattern Aberrant feature Referencesa

Recommended by ELN iMDS Flow WG

CV of CD36 Increased Mathis et al. (2013); Westers et al. (2017)

CV of CD71 Increased Mathis et al. (2013); Westers et al. (2017)

CD71 MFI Decreased Westers et al. (2017)

Percentage of CD117+ erythroid

cells

Decreased or increased Westers et al. (2017)

Optional

Relationship CD71-CD235a Disturbed Stetler-Stevenson et al. (2001); Eidenschink Brodersen et al. (2015)

Percentage of nucleated erythroid

cells

Increased Eidenschink Brodersen et al. (2015)

Percentage of CD105+ erythroid

cells

Decreased or increased Della Porta et al. (2006); Eidenschink Brodersen et al. (2015); Westers et al.

(2017)

CD105 MFI Decreased or increased Della Porta et al. (2006); Eidenschink Brodersen et al. (2015); Westers et al.

(2017)

aExamples of references that reported this feature.
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some cases of MDS (Della Porta et al., 2006; Westers et al., 2017;

Xu et al., 2012). Remarkably, CD105 expression was shown to be

negatively correlated with age in normal controls (Westers

et al., 2017). Ongoing studies may elucidate whether CD105 MFI is

truly valuable in the analysis of MDS-associated erythroid

dysplasia.

Additional markers may support the identification of dysplastic

features and hence, the separation between MDS and cytopenic con-

trols. Other markers that have been reported to be informative in

assessing MDS-related erythroid dysplasia are CD35, CD44, CD43,

CD49d, and the major coxsackie adenovirus receptor (CAR) (Bauer

et al., 2014; Laranjeira et al., 2015; Machherndl-Spandl et al., 2013;

Oliveira et al., 2019). However, these findings have not yet been vali-

dated in multiple centers.

In summary, we highly recommend including the following vari-

ables validated in a multicenter setting: CV of CD36 and CD71, MFI

of CD71 and percentages of CD117+ and CD105+ progenitors, with

reference values determined for each standardized work-up, on either

non-lysed or lysed BM.

7 | OTHER BM CELL SUBSETS

7.1 | Lymphocyte subsets in MDS

The low frequency of B-cell progenitors in BM CD34+ cells has been

included in several MDS MFC diagnostic scores (Ogata et al., 2009;

Ribeiro et al., 2006). However, the low frequency of B-cell precursors

had a relatively low specificity as an MDS-related feature (Bardet

et al., 2015; Rajab & Porwit, 2015). Preserved B-cell progenitors are

seen in approximately one-quarter of low-grade MDS (Chen

et al., 2020) and a low frequency of CD34+CD19+ cells can be seen

in older adults with no MDS features (Lorand-Metze et al., 2018).

Moreover, an independent prognostic value of BM progenitor B-cell

frequencies in patients with lower-risk MDS has been suggested

(Kahn et al., 2015).

Immune dysregulation plays an essential role in MDS (reviewed in

Lambert et al., 2016). In general, activation of myeloid-derived inflam-

mation, signified by NLRP3 (NOD-, LRR- and pyrin domain-containing

protein 3), is a characteristic element of MDS pathophysiology
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F IGURE 5 MFC assessments of erythroid dysplasia in MDS. The upper row displays patterns of normal erythroid maturation and a normal
homogenous CD71 expression (histogram, right). All plots were generated from assessments of ammoniumchloride-based lysed bone marrow
aspirates. The gray dashed boxes delineate most of the normal erythroid maturation patterns. The most immature erythroid cells are defined as
CD71+ CD235a�, CD71+ CD105+ and CD36+ CD117+, respectively. Upon maturation, expression follows a pattern upwards in the CD71
versus CD235a plot and downwards in the CD71 versus CD105 and CD36 versus CD117 plots. The normal absence of cells in the box between
erythroid progenitors and the remaining mature CD71� CD235+ erythrocytes is marked with an open arrow. The middle row displays an example
of dysplastic erythropoiesis in a case of MDS-MLD with increased CV of CD71 (black arrows) and increased frequency of immature erythroid
progenitor cells (%CD117 and %CD105, gray arrows). The expression of CD71 is decreased as well. The bottom row demonstrates an example of
MDS-RS-MLD where the erythroid cells show heterogeneous and decreased CD36 and CD71 expression as compared to the normal control
(indicated by black arrows). The frequency of immature progenitors is relatively low (%CD117 and %CD105, gray arrows); in addition, CD105
expression is decreased. Notably, the displayed results are not typical for either of the WHO classification subtypes, but just an example of
possible dysplastic features associated dyserythropoiesis by MFC. CV, coefficient of variation; dim, diminished; LD, multilineage dysplasia; RS,
ring sideroblasts [Color figure can be viewed at wileyonlinelibrary.com]
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(Sallman & List, 2019). However, adaptive immune responses follow a

more stepwise transformation from a protective activated adaptive

immunity to a more immunosuppressive cellular response as the dis-

ease progresses.

Expansion of pro-inflammatory T cells, including T helper 17 cells

(Th17), has been shown in lower-risk MDS (Epling-Burnette, Painter,

et al., 2007; Kordasti et al., 2009). At the same time, a predominantly

suppressive milieu characterizes higher-risk disease with significant

expansion of immunosuppressive cells such as regulatory T cells

(Tregs) (Kordasti et al., 2009; Kotsianidis et al., 2009) accompanied by

a reduction in the number and function of BM dendritic cells (Saft

et al., 2013) and NK cells (Epling-Burnette et al., 2007).

Overall, the adaptive immune system has an essential role in the

pathophysiology and risk stratification of MDS (Platzbecker &

Kordasti, 2020; Winter et al., 2020). Although there is no consensus

on the role of B- and T-cell studies in MDS diagnostics (van de

Loosdrecht et al., 2023), it is highly advisable to include T and B cell

markers in routineimmunophenotyping for MDS to evaluate the fre-

quency of B-cell precursors and to exclude the possibility of clonal

populations suggesting lymphoma. Multicentre studies, using similar

MFC panels are needed to clarify the predictive value of T and B cell

subpopulations and further design robust diagnostic panels and an

“immune scoring system” in the future.

7.2 | Dendritic cells

The role of dendritic cells (DCs) in MDS is largely unknown. Since DCs

are key players in the immune system by serving as regulators of

immune responses, they likely have an essential function in the patho-

genesis of MDS. Recent findings point to an impaired ability of DC

subsets to adequately respond to cellular stress and DNA damage in

immune escape and progression of MDS toward AML (Carenza

et al., 2019; Van Leeuwen-Kerkhoff et al., 2021). The development of

human DCs occurs in the BM, where they originate from common

precursor cells and differentiate into specialized subsets, respectively

conventional myeloid DC (cDC) and plasmacytoid DC (pDC). These

DC subsets are decreased in the blood and BM of MDS

patients(Carenza et al., 2019; Saft et al., 2013; Van Leeuwen-Kerkhoff

et al., 2021). cDC are further separated in cDC1 (CD141+) and cDC2

(CD1c+) DC. Initially, a fourth DC subset, slanDC, was identified

based on the expression of M-DC8 (6-sulfo LacNAc or slan) and

CD16. Further studies showed that these SLAN+ cells are more

closely related to monocytes than to DC and they were renamed as

slan+ nc monocytes (van Leeuwen-Kerkhoff et al., 2017; 2018). A

decrease in the specific slan+ ncMo subset and increased CD1c

+ cDC (Meyerson et al., 2016) are features of CMML but their use in

the diagnosis or prognostication of MDS is unclear (Van Leeuwen-

Kerkhoff et al., 2021). Re-appearance of the slan+ ncMo subset is

associated with response to hypomethylating drugs in CMML (Tarfi

et al., 2019). Conversely, in approximately 20% of CMML patients, an

excess of CD123+/CD56�/BDCA2+/BDCA4+ pDC was found to cor-

relate with the presence of somatic RAS mutations and an increased

risk of transformation (Lucas et al., 2019).

7.3 | Mast cells

Immunophenotyping of BM mast cells by MFC is recommended if a

concomitant mast cell disease is to be confirmed or excluded in

patients with MDS (Valent et al., 2017). In normal BM, mast cells

express CD33, CD44, CD45, and CD117 (KIT) but do not express

CD2, CD25, CD30 or CD34 (Morgado et al., 2014; Valent

et al., 2010). Depending on their maturation stage, BM mast cells may

also have low expression of CD11a, CD123, and CD203c. In MDS

patients, mast cells may display CD25, while in MDS with concomi-

tant systemic mastocytosis (SM-MDS) mast cells express aberrant

CD2, CD25, and CD30 (Escribano et al., 2001; Sotlar et al., 2011). In

these cases, mast cells also display higher levels of CD44, CD123, and

CD203c expression than normal BM mast cells (Hauswirth

et al., 2008; Pardanani et al., 2015).

7.4 | Basophils

Basophil numbers may increase in MDS with disease progression and

basophilia in MDS has an adverse prognostic significance

(Matsushima et al., 2003; Wimazal et al., 2008; Wimazal et al., 2010).

Normal mature basophils express CD25, CD33, CD44, CD123,

CD203c, and FcεRI but do not express substantial amounts of CD30,

CD34, or CD117 (Florian et al., 2006). In MDS, basophils express the

same markers as normal basophils. The expression of CD117 may be

substantial in immature basophils. Although basophil counting is con-

sidered helpful in MDS, basophil immunophenotyping is not consid-

ered mandatory in these patients.

8 | FLOW CYTOMETRY SCORING
SYSTEMS

Several MFC scoring systems for immunophenotypic signs of myelo-

dysplasia have been described and validated (summarized in Table 5).

Some of the scoring systems focus on MPs, while others focus on

erythropoietic precursors. Some scoring systems require large panels

to explore both MPs, granulopoiesis, monopoiesis, and erythropoiesis.

Two comparisons of several scoring systems (Davydova et al., 2021;

Oelschlaegel et al., 2021) recommend the iFS score (Cremers

et al., 2017, Table 6) as the one with the best balance between sensi-

tivity and specificity. However, the correct application of this score

requires approximately 40 markers in a multicolor setting (Cremers

et al., 2017; Kern et al., 2022).

The ELN iMDSFlow WG multicenter study confirmed the diag-

nostic potential of MFC aberrancies and identified 17 markers as the

most specific, independently related to MDS diagnosis (Kern

et al., 2022). These include the percentage of aberrant MPs, aberrant

expression of CD45, CD13, CD117, CD5, CD7, CD56, and HLA-DR

on MPs, percentage of aberrant neutrophils, aberrant scatter of neu-

trophils, aberrant CD33 expression and CD13/CD16 pattern in neu-

trophils, percentage of aberrant monocytes, HLA-DR/CD11b pattern

on monocytes, aberrant CD13 and CD56 expression on monocytes as
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well as aberrant CD71 expression on erythropoietic precursors. The

multicenter study did confirm that finding three aberrant markers

was of diagnostic significance but did not confirm the necessity of

aberrant immunophenotypic changes in two hematopoietic com-

partments. The set of markers that were identified as independently

related to a diagnosis of MDS/CMML (Kern et al., 2022), and MP

count >3% of BM cells in the appropriate clinical setting, should be

considered indicative of MDS or MDS/MPN. Again, MFC results

should always be evaluated as a part of a multimodal, integrated

hematopathology work-up.

9 | COMPUTATIONAL ANALYSIS/
FUTURE DIRECTIONS

The increasing number of markers that can be measured simulta-

neously, both by flow and mass cytometry (Bachas et al., 2022), has

accelerated the development of novel analysis tools. Such tools as

Phenograph or FlowSOM apply clustering methods to group cells

with similar MFC properties (Levine et al., 2015; Quintelier

et al., 2021; Van Gassen et al., 2015). There are several advantages

to using these tools as compared with manual analysis. As these

methods rely on unsupervised analysis, the multidimensionality of

MFC data is considered and a predetermined gating strategy is not

necessary (Pedreira et al., 2013; Saeys et al., 2016). This results in

reproducible and objective identification of relevant cell populations

and may also reveal novel relevant cellular properties due to the

largely unbiased approach of unsupervised analysis. As aberrancies

in MDS are subtle and require particularly precise gating in super-

vised strategies, implementation of such tools may be advantageous

in MDS work-up. Moreover, identifying novel relevant cellular prop-

erties could be relevant for diagnosis, risk stratification and prognos-

tication in MDS.

Several successful efforts have been made to implement such

tools for clinical applications in hematological malignancies, including

MDS (Duetz et al., 2019; Duetz et al., 2020; Duetz et al., 2021). A

combination of FlowSOM and Kaluza® has been developed and

published (Béné et al., 2020; 2021; Lacombe, Dupont, et al., 2019;

Lacombe, Lechevalier, et al., 2019), which allows for rapid and com-

plete characterization of subsets generated by the unsupervised

analysis of classical MFC list-modes. In a first attempt, this has been

applied to delineate normal BM subsets with four 10-color antibody

panels used on merged normal BM samples (Lacombe, Dupont,

et al., 2019). Then, the combination of diagnosis and follow-up sam-

ples from patients with hematological malignancies (acute leukemia

or MDS) together with this reference normal BM has been devel-

oped for direct comparison and identification of subsets of interest

(Lacombe, Lechevalier, et al., 2019). This approach is easy to apply

but requires some critical pre-analytical features. The same panel

must be used for all samples on a single instrument or several har-

monized instruments. Compensations must be carefully controlled,

and the files should be normalized for proper comparison after

merging. The tools necessary for these preliminary operations haveT
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been developed. In another study, FlowSOM was used in a fully auto-

mated diagnostic workflow, combined with preprocessing of raw data

by Flow-artificial intelligence (FlowAI) and a random forest machine

learning algorithm (Duetz et al., 2021). This workflow outperformed

currently used manually analyzed scores such as the iFS and the

Ogata score regarding accuracy (sensitivity 85%–97% and specificity

93%–97%), analysis time (<3 min), and the number of antibodies

needed. In addition, this method confirmed the discriminative value of

CD36 and CD71 MFI CVs for the erythroid lineage. It has also identi-

fied an increased SSC of more mature erythroid cells as a highly infor-

mative feature of MDS-associated dysplasia (Duetz et al., 2021;

Westers et al., 2023). This finding was independently confirmed by

others using traditional analysis (Johansson et al., 2021). Likewise,

Barreau et al. (2020) developed a semi-automated approach for a

MFC diagnosis of MDS. BM-derived monocytes and neutrophils were

analyzed using the maturation tool in Infinicyt™. This approach

resulted in increased diagnostic accuracy, especially with increased

sensitivity, and proved valuable in prognostication.

Other studies focused primarily on risk stratification, such as a

large study of Ko et al. (2018) who applied Gaussian Mixture Models

on MFC data from healthy donors and MDS or AML patients, before

and after treatment. These models allowed for the prediction of

progression-free and overall survival in AML and MDS patients (van

Spronsen et al., 2019).

These studies are promising and may make MDS MFC accessible

to more laboratories, by reducing time investment for analysis and

increasing the accuracy of diagnosis and risk stratification by identify-

ing novel parameters. Nonetheless, several steps and studies are

desirable to facilitate widespread (clinical) implementation. Essential

aspects to consider are uniformity and quality standards for panels,

sample preparation, flow cytometers and optimization of raw MFC

data. Although this is important for (computational) MFC in general, it

may be particularly important in MDS, as MDS aberrancies are more

complex and subtle than those of acute leukemia or multiple mye-

loma. Therefore, rigorous quality measures may be necessary for MDS

to reach a sufficiently high signal-to-noise ratio, especially regarding

studies and clinical applications for MFC data from different centers

acquired over a long time. Several suggestions for optimization of pre-

analytical and analytical steps for high dimensional MFC data and

computational analysis are made in the paper by Brummelman et al.

(2019). If retrospective data are used from multiple centers or flow

cytometers, without standardized instrument settings and protocols

several methods must be developed to normalize raw MFC data (Azad

et al., 2016; Finak et al., 2014; Subirá et al., 2021). Some of these nor-

malization methods use control samples as a reference, and therefore,

require a different study design (Hahne et al., 2010; Van Gassen

et al., 2020). It seems that complete standardization of protocols may

be critical for inter-laboratory comparison of results unless every labo-

ratory undertakes its own machine-learning process on controls.

The development of novel computational systems for detecting

cell (sub)populations is still ongoing (Finak et al., 2016; Flores-

Montero et al., 2017; Pedreira et al., 2019). It is of interest that sev-

eral of these tools will be applied in parallel to classical analyses to

investigate which are most suited for MDS integrated diagnosis, risk

stratification, and potential response to therapy based on MFC data.

In addition, compilations of large uniform datasets are desirable, as

most of these machine-learning-based methods tend to perform bet-

ter with larger sample numbers, especially in such a heterogeneous

disease as MDS.
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